Coding for
Catalogers

A Practilical Approach to Programming

Carolyn Hansen
#alaacl9 |#catalogingNormsIG| June 22, 2019
#codingd4catalogers

apbout me

>>> I'm a librarian, not a
professional developer or programmer

>>> 1 reslsted learning how to code
for a long time because I was
intimidated

>>> coding has made my cataloging
li1fe easier, empowered me, and
improved my ability to communicate
with IT and systems folks

qulick thanks to the folks
who helped me learn to code

>>> Sean Crowe, Digital Analyst &
Developer Librarian, University of
Cincinnatzi

>>> James Van Mil, Digital Analyst &
Developer Librarian, University of
Cincinnati

outline

>>> coding 101 + why coding for
catalogers?

>>> tools you can use with your code
>>> cataloglng examples

>>> how to get started + tips

what 1s coding?

>>> uslng a machiline language to write
instructions that a computer can
understand

>>> you may also hear coding referred
to as “programming” or “scripting” —
these terms have subtle differences
1n meaning

when To use code

>>> you'’re about to do something
manual and repetitive to your data

>>> you’re working with a large set
of records and need to make
consistent changes across the set

>>> bulk formatting, splitting,
joining, or standardizing, especially
with tabular data like spreadsheets

how can coding help
catalogers?

>>> automate bulk changes to large record sets
>>> standardilize and cleanup tabular data

>>> Transform records from one metadata
standard to another

>>> extract metadata and data from non-library
sources to create new record sets

>>> enhance, correct, and cleanup vendor
records

>>> fi1x data encoding 1ssues

what coding i1isn’-
for..

(|

>>> artilisanal metadata creation
requliring specilalilzed domain
knowledge

SO...

>>> computers can’t (and shouldn’t!)
replace high quality catalogers, but
they can help catalogers automate
the boring stuff

what you need to
code

>>> machlne with one of the followlng
Operating Systems (0OS): Windows, Mac,
Linux

>>> administrative access to your
machine (sometimes 1n more controlled
workplaces this can be a problem)

>>> gccess to the command line

>>> text editor of choice (ex. Sublime,
Atom, Vim)

what 1s the command
l1ne?

>>> text i1nterface for your computer

>>> program that takes i1n commands, and
passes them to your computer’s 0OS to execute

>>> you can use the command line to navigate
files and folders; you can also use 1t to
run code

>>> on Mac or Linux, you can access the
command line through terminal — 1t’s a
little more complicated on Windows

command llne example:
super simple code
using python

carolynhansen — python — 80x23

.ast login: Thu Jun 20 16:87:82 on ttys@eo

Carolyns-Air:~ carolynhansen$ python

Python 2.7.18 (default, Feb 7 2817, 00:88:15)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-860.08.34)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print "hello Cataloging Norms IG"

hello Cataloging Norms IG

>>> print "This 1s your first line of code"

This 1s your first line of code

>>2

note: most programs (complete, executable lines of code) are written in a text editor and then run using the command line.

how to execute a short
program on the command line

>>> wrlite code 1n text editor of your
cholce, save to your local machilne
with appropriate file extension (ex.
for a python script i1t would be .py)

>>> access the command line, then
execute your program

>>> success! (or you’ll get an error
message)

short program using python, written in Atom text editor and
saved to my desktop

python_example.py

print("Hello Cataloging Norms IG!")
2 print("This is your first program")

ran program using terminal on my Mac — first navigated to my
desktop using “cd” command, then ran the program

Desktop — -bash — 80x24

Last login: Sat Jun 22 B87:41:88 on ttysBoo

Carolyns-MacBook-Air:~ carolynhansen$ cd desktop
Carolyns-MacBook-Air:desktop carolynhansen$ python3 python_example.py
Hello Cataloging Norms IG!

This is your first program
Carolyns-MacBook-Air:desktop carolynhansen$

ﬁ

my favorite
languages: @ puthon

>>> why python?

>>> 1ntultive and easy to learn,
syntax 1s not complicated

>>> open source, robust community and
documentation

>>> lightwelight and modular, can build
up functionality by adding libraries
(ex. re, csv, glob, numpy, etc)

my favorite
languages: [/ K

A PROGRAMMER'S BEST FRIEND

>>> why Ruby?

>>> 1ntuitive and easy to learn,
syntax 1s not complicated

>>> open source, robust community and
documentation

>>> can be used with gems, which are
bundled packages of Ruby code — there
are thousands of gems available!

other languages to
explore:

and many, many more....

how do you decide
which language to use?

>>> comfort level and level of experience,
ex. Java 1s not a good entry level language

>>> what are you trying to do? some
languages are more function specific, ex.
python and Ruby are for automation, while
Javascript can be used for data
visualizations or make dynamic things happen
on a static website

>>> 1s this an established language? 1f the
community 1sn’t robust, i1t will be more
difficult to get help 1f you need 1t

tools you can use
with your code

>>> regular expressions
>>> shell scripts

>>> XSLT

regular expressions

>>> also known as “regex”

>>> sequence of characters that define a
search pattern

>>> like a much more powerful version of
“find” or “find and replace”
functionality

>>> uslng regex 1n your code allows you
to make global/bulk changes and
standardize metadata

use case:
global changes to
MARC records using python & regex

#Global changes for MvlI full records

#move 001 to 935

re.sub('=001 gp', r'=035 \\\\%a(GPO)', x)

#replace 913 with 949 stem
'

re.sub('=913.%\%c"', r'=949 \\1s%a', x)
we 035 OCLC no to 901

re.sub('=035 \\\\@\Saoc', '=001 oc',
lete 599 and 999 fTields

re.sub('=599.%\n', '', Xx)

re.sub('=999.%\n', '', x)

#standardize 856 1T present
re.sub('(=856.x?)\su', '\\1$zConnect to resource online$u', x)
re.sub('=856 7.', '=856 40', x)

iemove "$2hhtp" wherever 1t appears
re.sub('\$2hhtp',
= X.split('\n\n')

note: lines beginning with # are comments, not lines of executable code
source: https://github.com/crowesn/batch_cave/blob/master/1.3_Mvl BatchEdit.py

https://github.com/crowesn/batch_cave/blob/master/1.3_MvI_BatchEdit.py

shell scripts

>>> computer program that can be run on a
Unix shell

>>> allows you to manipulate files, execute
programs, and print text

>>> very useful when you need to run code
on multiple files within a single directory

>>> shell scripts are 1like the “duct tape”

of programming; they can be used quickly to
fix a problem

note: similar functionality can be accomplished with batch scripts in Windows environments

use Casce.

shell script to process

multiple

¥!/bin/bash

1les 1n a directory

FILES=./*.xml

out=".0UT"

or T in SFILES

echo "Processing STt file..."

take act

d ane

10n on each Tile. $T store current

xsltproc UC_EAD _to MARC.xsl $f > $fSout

source: https://github.com/crowesn/UC EAD to MARCXML/blob/master/UC EAD to MARC.sh

https://github.com/crowesn/UC_EAD_to_MARCXML/blob/master/UC_EAD_to_MARC.sh

XSLT

>>> XSLT = eXtensible stylesheet
language transformation

>>> styling language for XML

>>> gsort of like CSS for HTML

use case:
AD to MARCXML (custom)
using XSLT

L~

L version="1.0" encoding="UTF-8" 7>
xsl:stylesheet version="1.0" xmlns:marc="http://www.loc.gov/MARC21/s1im"
xmlns:xs1="http://www.w3.0rq/1999/XSL/Transform" exclude-result-prefixes="marc">
<xsl:import href="MARC21slimUtils.xsl"/>
s L:output method="xml" encoding="UTF-8" indent="yes"/>
L:template match="text()"/>
; L:template match="/ead">
<marc:collection xmlns:marc="http://www. loc.gov/MARC21/slim"
xmlns:xsi="http://www.w3.0rq/2001/XMLSchema-instance"
xsi:schemalocation="http://www. loc.gov/MARC21/s1lim http://www. loC.gov/standar;
<xsl:variable name="bulkdate" select="//unitdate[@encodinganalog="'245%f"']"/>
<marc:record>
marc: leader>
<xsl:text>01125npc 12200289K1 4500</xsl:text>
</marc: leader>
<xsl:choose>
<xsl:when test="Sbulkdate!="'"'">
<marc:controlfield tag="008">
<xsl:text>040320k</xsl:text>

<xsl:value-of select="substring-before($bulkdate, '-')"/>

<xsl:value-of select="substring-after(sbulkdate,'~"')"/>
<xS L text=>xx\\\\\\ A\ eeo\B\eng\d</xs1: text>

</marc:controlfield>

</xsl:when>

note: some values are hardcoded and others are variable
source: https://github.com/crowesn/UC_EAD_to MARCXML/blob/master/UC_EAD_to MARC_Winkler_2.xsl

https://github.com/crowesn/UC_EAD_to_MARCXML/blob/master/UC_EAD_to_MARC_Winkler_2.xsl

use case: converting
XML ETD metadata to CSV

L

1 import xml.etree.ElementTree as ET
import csv
import glob
I import re
forCSV =[]
forCSV.append(['authorname', 'title', 'dept', 'keywords', 'pages', 'abstract',6 '

for file in glob.glob('*.xml'):
print(file)
tree = ET.parse(file)
root = tree.getroot()

for item in root.iter('DISS_advisor'):
advisorsurname= item.find('DISS_name/DISS_surname').text
advisorfirstname= item.find('DISS_name/DISS_fname').text
advisormiddlename= item.find('DISS_name/DISS_middle').text
advisorname= advisorsurname, advisorfirstname, advisormiddlename

note: distinct libraries are imported at the beginning of the code, showing the modular nature of python
full code: https://github.com/carohansen/SBU_etd to _csv

https://github.com/carohansen/SBU_etd_to_csv

sharing your code

>>> 1f you want to collaborate on code, publish 1t
so other folks can use 1t, or want wversion control,
G1tHub 1s currently the standard option

>>> Gi1tHub 1s a hosting service and creating an
individual account 1s free

>>> 1f you put a project on GitHub, you can access
and edit 1t through the command line on your local
machine using Git commands. There are also desktop
clients that you can use 1f you prefer.

>>> Gi1itHub has some social network-y components
(ex. you can follow accounts, there are feeds, etc)

how can

vou get
ced?

SLadl

>>> there are lots of online tools for
the basics and getting your feet wet

>>> My favorites:

>>> Codeacademy (basic service 1s free

and you can upgrade
for a fee)

>>> w3schools (free

>>> G1ltHub CodeCamp

to premium version

)

(free)

t1ps

>>> having a real life project using your
library’s data will make your coding experience
more meaningful

>>> jJust like with human language, 1f you don’t
practice, you will forget what you learned

>>> having consistent, scheduled coding time
and someone to practice with keeps you on
track. I’ve used weekly hackathons 1n the past
and found those to be very effective.

resources

www . codeacademy.com

github.com

github.com/freeCodeCamp

www.python.orqg

wWww.ruby-lang.org

wWww.Sstackoverflow.com

WWW.w3schools.com

Automate the Boring Stuff with Python: Practical
Programming for Total Beginners. Written by Al Swelgart.
Free to read under a CC license:
automatetheboringstuff.com

http://www.codeacademy.com
http://github.com
http://github.com/freeCodeCamp
http://www.python.org
http://www.ruby-lang.org
http://www.stackoverflow.com
http://www.w3schools.com
http://automatetheboringstuff.com

thank vyou!

>>> emaill:
carolyn.hansen@stonybrook.edu

>>> twitter: @meta caro

>>> questions?

mailto:carolyn.hansen@stonybrook.edu

